

Eksperimentell tareprosessering i SusKelpFood prosjektet

Oslo 15. august 2024

Dagbjørn Skipnes og Marthe Jordbrekk Blikra

Bidragsytere: Tone Mari Rode, Torstein Skåra, Ingrid Maribu, Randi Sund og Mette Risa Vaka.

Oversikt over prosesseringsmetoder i SusKelpFood

PEF

Blansjering

Fermentering

Frysing og tining

Syrekonservering

Ultralyd + tørking

Mikrobølger + tørking

PEF

Blansjering

Fermentering

Frysing og tining

+ tørking

+ tørking

Manglende data eller databehandling

PEF

Blansjering

Fermentering

Randi presenterer

Syrekonservering

Ultralyd + tørking

Mikrobølger + tørking Manglende data eller databehandling

Presenteres her

PEF

Blansjering

Fermentering

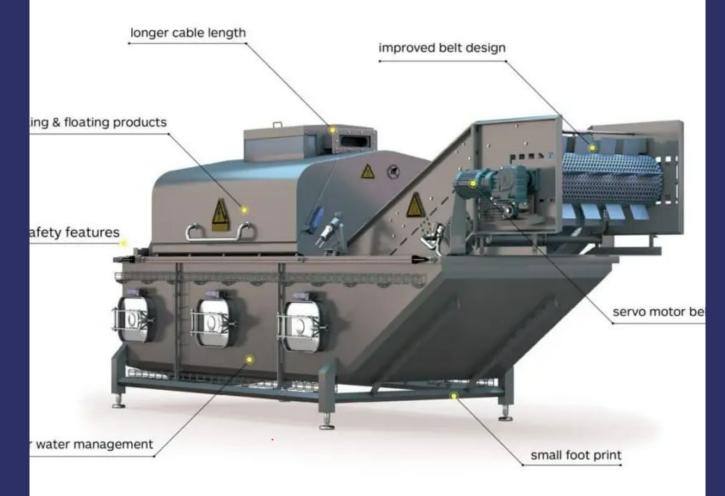
Frysing og tining

Randi presenterer

Syrekonservering

Ultralyd + tørking

Mikrobølger + tørking Manglende data eller databehandling



PEF & blansjering

7

Are there PEF systems large enough for efficient kelp processing?

A better question: Are there commercial PEF systems that are so small that they may be used for kelp.

Left: Elea potato processing unit 100 t/h.

Currently no kelp producer in Norway operate in this range.

Smallest continous system of Elea.

May be run between 1 and 7.5 t/h

Large enough for processing a yearly produce in less than one week (running 8 h /day)


POWER SUPPLY

400/415 V, 50 Hz (3Phase/Ground), 32 A for B1 mini, 63A for B1.

Background

Saccharina latissima is currently important. However, efficient post-harvest processing methods that can improve extraction or concentration of elements in an energyefficient way are needed.

Blanching is currently the most used method for iodine reduction. However, this is a very energy-demanding process.

Pulsed electric field (PEF)

has been shown to reduce iodine content in *S. latissima* and improve extraction of other elements

PEF parameters

- Seaweed 500.5 ± 0.3 g immersed in 5 L tap water
- Electrode voltage of 24 kV; electrode distance 24 cm
- Frequency 30 Hz;
- Pulse width of 6 us
- PEF1: Pulse count 200; Energy 2.7 ± 0.3 J/g
- PEF2: Pulse count 800; Energy 14.4 ± 1.0 J/g

	LWT - Food Science and Technology 169 (2022) 114033	
	Contents lists available at ScienceDirect	ELWT-
A.	LWT	
ELSEVIER	journal homepage: www.elsevier.com/locate/lwt	The second second

On the use of pulsed electric field technology as a pretreatment to reduce the content of potentially toxic elements in dried *Saccharina latissima*

Marthe Jordbrekk Blikra^{*}, Dagbjørn Skipnes, Torstein Skåra

Department of Processing Technology, Seafood Division, Nofima AS, P.O. Box 8034, NO-4068, Stavanger, Norway

The content of PTEs (mg/kg dry sample) and the dry matter content (g/100 g wet weight) of samples of *Saccharina latissima*

Sample name	Data (mg/kg dry sa	ample)		Limits (mg/kg)			
	Pos. control	PEF (1)	PEF (2)	Freeze-thawed	EU – food supplement*	EU – algae as food**	France***
Iodine ¹ Arsenic ² Cadmium ² Mercury ² Lead ² Dry matter ¹	$\begin{array}{c} 4700\pm 600^{a}\\ 71\pm 7^{a}\\ 2.1\pm 0.5^{a}\\ 0.029\pm 0.003^{a}\\ 0.9\pm 0.6^{a}\\ 91.3\pm 0.2^{a} \end{array}$	$\begin{array}{c} 2700\pm100^{\rm b}\\ 63\pm9^{\rm a}\\ 1.9\pm0.1^{\rm a}\\ 0.023\pm0.002^{\rm b}\\ 1.8\pm1.1^{\rm a}\\ 90.2\pm0.3^{\rm b}\end{array}$	$\begin{array}{c} 2900\pm 300^{b}\\ 63\pm 12^{a}\\ 2.1\pm 0.5^{a}\\ 0.024\pm 0.001^{b}\\ 5\pm 7^{a}\\ 89.8\pm 0.2^{b} \end{array}$	$\begin{array}{c} 4400\pm 300^{a}\\ 65\pm 1^{a}\\ 2.2\pm 0.3^{a}\\ 0.026\pm 0.004^{ab}\\ 1.4\pm 0.7^{a}\\ 90.3\pm 0.4^{b} \end{array}$	none none 3.0 0.1 3.0	none none 0.01 none	2000 iAs: 3 0.5 0.1 5

Input energy required for processing of kelp and the associated iodine reduction

Treatment	lodine reduction (%)	Temperature (°C)	Time	Water to kelp ratio	Input energy (kJ/kg)	Reference
Blanching	92	45	2min	33	150	1
Boiling	38	95	15 min	3.8	340	2
Boiling	85	99	15 min	10	370	3
PEF - low	42	r.t.	~10s	10	2.7	This study

References: 1:Nielsen et al. (2020); 2: Bruhn et al. (2019); 3: Blikra et al., 2021, Blikra et al., 2021.

PEF parameters

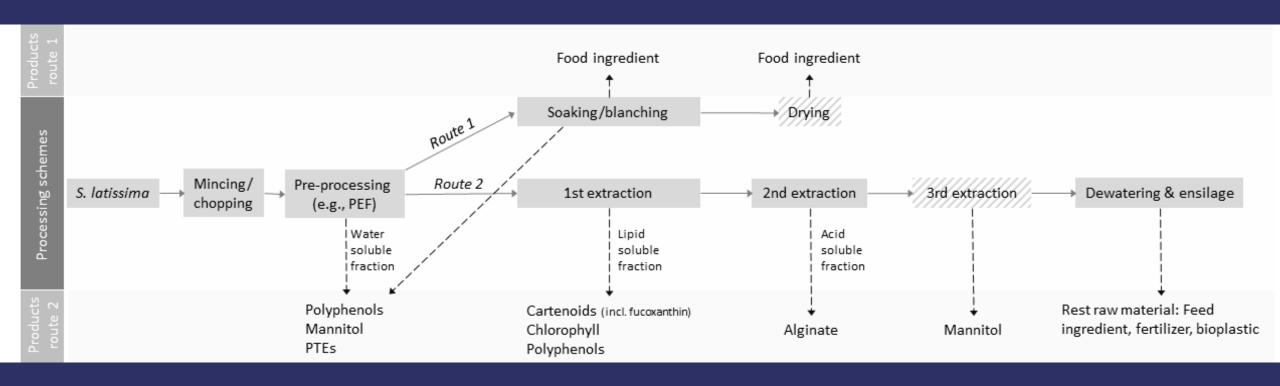
- Seaweed 900 g immersed in 1.8 L tap water
- Electrode voltage of 24 kV; electrode distance 24 cm
- Frequency 30 Hz;
- Pulse width of 6 us
- Pulse count 300; Energy 12.8 ± 0.5 J/g

,		
	LWT - Food Science and Technology 203 (2024) 116402	
	Contents lists available at ScienceDirect	Food Science and Technology
	LWT	
ELSEVIER	journal homepage: www.elsevier.com/locate/lwt	

Processing of sugar kelp: Effects on mass balance, nutrient composition, and color

Marthe Jordbrekk Blikra^{a,*}, Tone Mari Rode^a, Torstein Skåra^a, Ingrid Maribu^{b,c}, Randi Sund^{a,d}, Mette Risa Vaka^a, Dagbjørn Skipnes^a

^a Department of Processing Technology, Seafood Division, Nofima AS, P.O. Box 8034, NO-4068, Stavanger, Norway
^b Department of Marine Biotechnology, Seafood Division, Nofima AS, P.O. Box 6122, NO-9291, Tromsø, Norway
^c UiT - the Arctic University of Norway, P.O. Box 6050, N-9037, Tromsø, Norway
^d DTU National Food Institute, Technical University of Denmark, Anker Engelunds Vej 101, 2800, Kongens Lyngby, Norway



Main conclusions

- Combining PEF and soaking reduced iodine content -70%
 - without pre-heating
 - However, extraction of dry matter higher than compared to blanched only
- A processing scheme was suggested
 - A range of products suggested for
 - \circ Liquid fraction
 - \circ Solid fraction

One of the suggested processing schemes for **full biomass utilization** of kelp

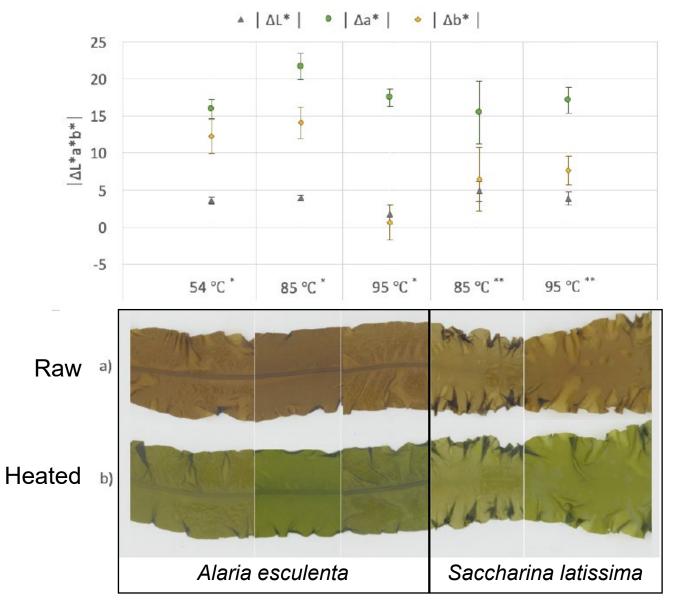
17 Processing of sugar kelp: Effects on mass balance, nutrient composition, and color - ScienceDirect

Blanching

• Treatment in water (or steam) at moderate to high temperatures for a short time (e.g., 30-100 °C for some seconds)

• Can be combined with MW, US, PEF, or ohmic heating

Some effects of blanching


From the perspective of using the seaweed

- Improve mass transfer:
 - Quicker drying
 - Alters chemical content
 - Decrease content of salt and PTEs (iodine, arsenic)
 - Can increase content of sugars/carbohydrates
- Improves sensory characteristics
 - Color and texture incl. improved crunchiness
- Biochemical effects
 - Enzyme inactivation
 - Inhibiting degradation of fucoxanthin (40 °C)
 - Improve antioxidant activity (but total polyphenol content decrease)
- Based on Table 2, review by Zhu et al. 2021. <u>https://www.sciencedirect.com/science/article/pii/S0308814621019555</u>

Relevant also from the perspective of using the extracts

- 54 °C, 2 min
- 85 °C, 5 s
- 95 °C, 15 min

Effects on PTE's

Sample	lodine		Arsenic		Cadmium		Mercury		Lead	
	Conc.	Red.	Conc.	Red.	Conc.	Red.	Conc.	Red.	Conc.	Red.
Literature	2630–7977	_	28–120	_	0.2–4.6	_	0.01-0.06	_	0.1–1.1	_
Cont.	5200	-	72.3 ^A	_	1.60 ^C	_	0.0185 ^A	_	0.151 ^A	_
S10	4300 ^B	17	63.4 ^{AB}	12.4	1.83 ^c	-14.3	0.0217 ^A	-17.5	0.114 ^A	24.6
B45	500 ^E	90	60.6 ^{BC}	16.2	2.45 ^B	-53.0	0.0235 ^A	-27.2	0.109 ^A	27.9
B60	500 ^E	90	53.9 ^{BC}	25.4	2.30 ^B	-43.3	0.0245 ^A	-32.6	0.135 ^A	10.6
PEF	2600 ^c	50	73.3 ^A	-1.4	2.58 ^B	-60.7	0.0289 ^A	-56.5	0.145 ^A	3.8
PEF + S10	1600 ^D	69	57.9 ^{BC}	20.0	3.19 ^A	-99.2	0.0316 ^A	-71.3	0.177 ^A	-17.5
PEF + B45	300 ^E	94	50.9 ^c	29.6	3.15 ^A	-96.3	0.0311 ^A	-68.4	0.156 ^A	-3.3
PEF + B60	300 ^E	94	51.7 ^C	28.6	3.43 ^A	-114	0.0419 ^A	-126.9	0.176 ^A	-16.6
UL (iodine) and TWI (me̪t̪als)	600 µg		Not establ.		2.5 µg/kg В	W	1.6 μg/kg BV	N	Not establ.	

Further work

- Asessment of sensorial impact of PEF (about to be submitted)
- Study of how PEF impact micobial activity (ongoing)
- Determine the economic impact of reduced shear force (coming)
- Upscaling for industrial production (next season?)