CEVA CENTRE D'ETUDE & DE VALORISATION DES ALGUES

Opportunities and hurdles with using kelp as food, example from France

Seaweed as food in France

20th century

1980 : start-up of edible algae

2000 : **30%** of French people had eaten seaweed during the year

2014 : **54%** of French people had eaten seaweed during the year

21st century

sushi, soups and wakame salads

2024

On-line survey : 89% of French people had eaten seaweed during the year

New image of algae : edible, healthy and tasty.

19th century No human consumption Raw material

Edible seaweed

Dulse (Palmaria palmata) Nori (Porphyra sp)

Alaria (Alaria esculenta)

Sea spaghetti (Himanthalia elongata)

Sea lettuce (Ulva sp)

Seaweed « tartare »

Tasty seaweed

Guacamole seaweed/spices

AIDE CULINAIRE Pâle umami

French wakame salad

Umami paste

Kombu salad on the go

Crispy seaweed sticks

Smoked wakame

Healthy seaweed

Fermented sea spaghetti

Snacks, chips

Salt alternatives

Vegan seafood alternative

Consumer perception

- Positive, promising points : local resources, nutritional benefits, alternatives to animal products, a modern world that opens up new horizons.
- But questions remain : gap between seaweed in its natural environment and its edible form.
- A major long-term challenge: empowering consumers in their use of seaweed

Seaweed in the kitchen

- Setting up a training course (2 days) for restaurant chefs/cuisiniers (Merci les Algues!)
- Educational activities in culinary schools : "Recipe inspiration booklet"
- Sensalg : information platform on edible seaweed

Contaminants : French recommendation

- Currently, French recommendations define maximum levels of contaminants for algae
- Not a regulation...
 - But these levels are considered a high guarantee for food safety
- Important cost for algae producers

	Maximum level (mg/kg DM)
Inorganic Arsenic (As)	3
Cadmium (Cd)	0,5
Mercury (Hg)	0,1
Lead (Pb)	5
Tin (Sn)	5
lodine (I)	2 000

Maximal level of heavy metals and iodine authorized in algae (mg/kg dry matter)

lodine

- Iodine is essential for the synthesis of thyroid hormones.
 - ≠ contaminant
 - Thyroid hormones regulate metabolism, promote growth, development and maturation of all organs, especially the brain
 - In Europe, adults and pregnant women, particularly, are at risk for iodine deficiency (Ittermann et al, 2020)

How to cope with iodine richness ?

Process/formulation

- Technical feasibility of reduction of iodine content demonstrated : up to 80% (blanching, maceration, pasteurization)
- Variety of species
- Diversity of preparation

Labelling

- Some recommendations
 - Iodine content on the package
 - Portion indication
 - German recommended text (BfR, 2007) " lodine-rich food.
 Excessive iodine intake can be harmful to health and lead to disorders of thyroid function and iodine metabolism."

Species of concern : *Laminaria digitata, Saccharina latissima, Gracilaria sp.*

Cadmium


In 2020 : ANSES recommends to limit cadmium exposure from the consumption of seaweed

- setting the **lowest** possible maximum cadmium concentrations in edible seaweed
- Proposing a maximum cadmium level of 0.35 mg/kg DM in edible seaweed !
- conducting a new survey to collect more data on edible seaweed consumption habits in France

7

Regulation (CE) N° 2023/915 Cadmium level

Seaweed food supplement < 3 mg/kg Mollusc (fresh) < 1 mg/kg

How to cope with Cadmium content ?

Process ?

- Fresh water soaking treatment/blanching <u>failed</u>to reduce Cd
- High salinity treatment (in 2.0M NaCl) reduces Cd content (Stevant, 2019)
 - But strongly affects product
 quality (3-fold increase in Na)

Health risk ?

- Cd bound to dietary fibers (alginate): presumably low bioavailability
- Main contributor to cadmium exposure : bread products, potatoes and vegetables (ANSES, 2011)
- Portion of ingestion of seaweed : low contributor (Ficheux et al, 2023)

Seaweed as food in France

- Creative and dynamic market, new starts-up
- Development of « ready-to eat » products : salads, snacks, european « asiatic products »
- To support algae as food, we need :
 - More seaweed ! Development of seaweed aquaculture (offshore, in-land)
 - More studies of stabilization process and impact on nutritional composition
 - Harmonizing EU regulation on contaminants
 - Simplifying procedures across Member States
 - Risk assessment study on algae portion size

Hélène MARFAING Food and feed applications Manager <u>helene.marfaing@ceva.fr</u>

CENTRE D'ÉTUDE & DE VALORISATION DES ALGUES

